Australian/New Zealand Standard™

Safety of laser products

Part 14: A user’s guide
This Joint Australian/New Zealand Standard was prepared by Joint Technical Committee SF-019, Personal Protection Against Laser Radiation. It was approved on behalf of the Council of Standards Australia on 20 October 2011 and on behalf of the Council of Standards New Zealand on 25 October 2011. This Standard was published on 5 December 2011.

The following are represented on Committee SF-019:

- Australasian Faculty of Occupational & Environmental Medicine
- Australian Dental Association
- Defence Materiel Organisation (Australia)
- Defence Science & Technology Organisation
- Electronics Industry Association
- National Radiation Laboratory New Zealand
- Royal Australian and New Zealand College of Ophthalmologists
- Safety Institute of Australia
- Telecom New Zealand
- Telstra Corporation
- University of New South Wales at the Australian Defence Force Academy

Keeping Standards up-to-date

Standards are living documents which reflect progress in science, technology and systems. To maintain their currency, all Standards are periodically reviewed, and new editions are published. Between editions, amendments may be issued. Standards may also be withdrawn. It is important that readers assure themselves they are using a current Standard, which should include any amendments which may have been published since the Standard was purchased.

Detailed information about joint Australian/New Zealand Standards can be found by visiting the Standards Web Shop at www.saiglobal.com.au or Standards New Zealand web site at www.standards.co.nz and looking up the relevant Standard in the on-line catalogue.

For more frequent listings or notification of revisions, amendments and withdrawals, Standards Australia and Standards New Zealand offer a number of update options. For information about these services, users should contact their respective national Standards organization.

We also welcome suggestions for improvement in our Standards, and especially encourage readers to notify us immediately of any apparent inaccuracies or ambiguities. Please address your comments to the Chief Executive of either Standards Australia or Standards New Zealand at the address shown on the back cover.

This Standard was issued in draft form for comment as DR AS/NZS IEC 60825.14.
Australian/New Zealand Standard™

Safety of laser products

Part 14: A user’s guide

COPYRIGHT

© Standards Australia Limited/Standards New Zealand
All rights are reserved. No part of this work may be reproduced or copied in any form or by any means, electronic or mechanical, including photocopying, without the written permission of the publisher, unless otherwise permitted under the Copyright Act 1968 (Australia) or the Copyright Act 1994 (New Zealand).

Jointly published by SAI Global Limited under licence from Standards Australia Limited, GPO Box 476, Sydney, NSW 2001 and by Standards New Zealand, Private Bag 2439, Wellington 6140

ISBN 978 0 7337 9985 3
PREFACE

This document was prepared by the Joint Standards Australia/Standards New Zealand Committee SF-019, Personal Protection Against Laser Radiation, to supersede Section 3 of AS/NZS 2211.1:2004, Safety of laser products, Part 1: Equipment classification, requirements and user’s guide. AS/NZS 2211.1:2004 was a modified adoption of IEC 60825-1:2001, which incorporated a user’s guide as Section 3 of the Standard. The 2007 revision of IEC 60825-1 relocated the user’s guide into a new part of the series, IEC/TR 60825-14.

This document is identical with, and has been reproduced from IEC/TR 60825-14, Ed.1.0 (2004), Safety of laser products—Part 14: A user’s guide.

The objectives of this document are as follows:

(a) To protect people from laser radiation in the wavelength range 180 nm to 1 mm by indicating safe working levels of laser radiation.

(b) To help users understand the general principles of laser safety management and use manufacturer supplied information to develop proper precautions and establish procedures to mitigate risks.

(c) To provide a framework for users to identify and evaluate hazards and assess the risks in order to set up and maintain appropriate control measures.

(d) To reduce the possibility of injury by minimizing unnecessary exposure to radiation and to provide safe usage of laser products by specifying user control methods.

(e) To protect people against other hazards resulting from the operation and use of laser products.

As this document is reproduced from an International Technical Report, the following applies:

(i) Its number appears on the cover and title page while the International Technical Report number appears only on the cover.

(ii) A full point substitutes for a comma when referring to a decimal marker.

The term ‘informative’ has been used in this document to define the application of the annex to which it applies. An ‘informative’ annex is only for information and guidance.

Standards in the IEC 60825 series may have been adopted as either AS/NZS IEC 60825 series standards, e.g. IEC/TR 60825-14 has been adopted as AS/NZS IEC 60825.14, or AS/NZS 2211 series standards, e.g. IEC 60825-4 has been adopted as AS/NZS 2211.4.
CONTENTS

1 Scope and object...7
2 Terms and definitions ..8
3 Administrative policies ..16
 3.1 Safety responsibilities ..16
 3.2 Competent persons ..17
 3.3 Laser Safety Officer ..17
 3.4 Information and training..18
4 Laser radiation hazards ..19
 4.1 Laser products ..19
 4.2 Exposure to laser radiation ..23
 4.3 Determining the level of laser exposure ...23
5 Determining the maximum permissible exposure (MPE) ..28
 5.1 General remarks...28
 5.2 Repetitively pulsed or modulated lasers ...28
 5.3 Multiple wavelengths ...29
 5.4 Extended source MPEs ...30
 5.5 Hazard distance and hazard area ...30
6 Associated hazards ...31
 6.1 Additional health hazards ...31
 6.2 Hazards arising from the laser ...32
 6.3 Hazards arising from the environment ..33
 6.4 Control of associated hazards ...34
7 Evaluating risk..35
 7.1 Hazards and risks ...35
 7.2 Risk assessment: Stage 1 – Identifying potentially injurious situations35
 7.3 Risk assessment: Stage 2 – Assessing risk for potentially injurious situations36
 7.4 Risk assessment: Stage 3 – Selecting control measures38
8 Control measures ..38
 8.1 General ..38
 8.2 Hazard reduction ..39
 8.3 Enclosing the hazard ..39
 8.4 Hazard mitigation ...41
 8.5 Equipment servicing ..46
9 Maintenance of safe operation ...47
10 Incident reporting and accident investigation ...48
11 Medical surveillance ..48

Annex A (informative) Examples of interlock systems for laser controlled areas54
Annex B (informative) Examples of calculations ..59
Annex C (informative) Biophysical considerations ..82

Bibliography...92
Figure 1 – Laser hazard symbol

Figure 2a – Measurement set-up using a lens

Figure 2b – Direct measurement set-up

Figure 2 – Measurement set-ups

Figure A.1 – Purpose of an interlock system

Figure A.2 – Non-locking interlock system

Figure A.3 – Locking interlock system

Figure B.1 – Laser diode array with two groupings

Figure C.1 – Anatomy of the eye

Figure C.2 – Diagram of laser-induced damage in biological systems

Table 1 – Default protective control measures for laser products

Table 2 – The diameter of the limiting aperture applicable to measurements of irradiance and radiant exposure (t is the exposure duration)

Table 3 – Duration T_i below which pulse groups are summed up

Table 4 – Additivity of effects on eye (O) and skin (S) of radiation of different spectral regions

Table 5 – Maximum permissible exposure (MPE) at the cornea for direct exposure to laser radiation

Table 6 – Maximum permissible exposure (MPE) at the cornea for direct exposure to laser radiation from extended sources in the wavelength range from 400 nm to 1400 nm (retinal hazard region)

Table 7 – Maximum permissible exposure (MPE) of skin to laser radiation

Table 8 – Correction factors for MPEs

Table 9 – Laser controlled areas

Table C.1 – Summary of pathological effects associated with excessive exposure to light

Table C.2 – Explanation of measurement apertures applied to the MPEs
INTRODUCTION

To help in the use of this technical report, an outline of the topics that are covered within it is given below. The topics are presented in the order in which they would normally be considered as part of a laser safety programme.

- Safety responsibilities with regard to the operation of lasers and the need for appropriate training are covered in Clause 3.
- The meaning of the laser product classes and the assessment of laser exposure are covered in Clause 4.
- The determination of the maximum permissible exposure (MPE), and the concept of the hazard distance and hazard zone within which the MPE can be exceeded, are covered in Clause 5.
- Associated laser hazards (that is, hazards other than those of eye or skin exposure to the emitted laser beam) are covered in Clause 6.
- A three-stage process for evaluating risk (arising from both the laser radiation hazards discussed in Clauses 4 and 5, and the associated laser hazards discussed in Clause 6) is covered in Clause 7. These three stages are:
 1) the identification of all potentially injurious situations,
 2) the assessment of the risk arising from these situations and
 3) the determination of the necessary protective measures.
- The use of control measures for reducing the risk to an acceptable level is covered in Clause 8.
- The need to ensure the continuation over time of safe laser operation is covered in Clause 9.
- The reporting of laser-related hazardous incidents and the investigation of accidents is covered in Clause 10.
- The role of medical surveillance (eye examinations) is covered in Clause 11.
- Additional information on the use of interlock protection is given in Annex A.
- Examples of laser safety calculations are given in Annex B.
- An explanation of the biophysical effects of laser exposure to the eyes and skin is given in Annex C.
1 Scope and object

This technical report provides guidance on best practice in the safe use of laser products that conform to IEC 60825-1. The terms "laser product" and "laser equipment" as used in this document also refer to any device, assembly or system, which is capable of emitting optical radiation produced by a process of stimulated emission. However, unlike IEC 60825-1, this document does not cover light-emitting diodes (LEDs).

Class 1 laser products normally pose no hazard and Class 2 laser products present only a minimal hazard. With these products, it is normally sufficient to follow the warnings on the product labels and the manufacturer’s instructions for safe use. Further protective measures as described in this document should not be necessary.

This document emphasizes evaluation of the risk from higher power lasers, but the users of the lower power lasers may benefit from the information contained. See Table 1 for an overview.

This technical report can be applied to the use of any product that incorporates a laser, whether or not it is sold or offered for sale. Therefore, it applies to specially constructed lasers (including experimental and prototype systems).

This technical report is intended to help laser users and their employers to understand the general principles of safety management (Clause 3), to identify the hazards that may be present (Clauses 4 to 6), to assess the risks of harm that may arise (Clause 7), and to set up and maintain appropriate control measures (Clauses 8 to 11).

Laser control measures vary widely. They depend on the type of laser equipment in use, the task or process being performed, the environment in which the equipment is used and the personnel who may be at risk of harm. Specific requirements for certain laser applications is given in other documents in the IEC 60825 series (see the Foreword or bibliography for the titles of these documents).

The terms “reasonably foreseeable” and “reasonably foreseeably” are used in this document in relation to certain specific events, situations or conditions. It is the responsibility of the person using this document to determine what is “reasonably foreseeable” and what might occur “reasonably foreseeably”, and to be able to defend, on the basis of risk-assessment criteria, any such judgements that are made.

Reference is made in this document to laser “users”. This should be taken to include persons having responsibility for safety in addition to those who actually work with or operate laser equipment.

This is a free sample only.

Purchase the full publication here:

Or contact Standards New Zealand using one of the following methods.

Freephone: 0800 782 632 (New Zealand)
Phone: +64 3 943 4259
Email: enquiries@standards.govt.nz